Для сокращения затрат на массовое внедрение в промышленности целесообразно организовать выпуск измерительных станций, ориентированных на определенную сферу применения.

Список литературы

1. A. Sokolov, D. Docenko, E. Bliakher, O. Shirokobrod, J. Koskinen, <u>On-line Analysis of Chrome-Iron Ores on a Conveyor Belt Using X-Ray Fluorescence Analysis</u>, X-Ray Spectrometry, 2005, 34, 456-459.

ПОСТРОЕНИЕ СИСТЕМЫ ДИСПЕТЧЕРИЗАЦИИ И КОНТРОЛЯ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ КАК ЭЛЕМЕНТА УПРАВЛЕНИЯ ПРОМЫШЛЕННЫМ ПРЕДПРИЯТИЕМ

В.Ю. Доронин, Ю.Н. Волщуков, П.Л. Макашов ООО ЦИТ «Парадокс» А.В. Романенко, Е.Н. Ишметьев

ЗАО «Консом СКС»

А.В. Леднов

Магнитогорский государственный технический университет

В.Н. Макашова

Магнитогорский государственный университет OOO ЦИТ «Парадокс», г. Магнитогорск, Россия, makashov@citparadox.ru

Современные промышленные предприятия характеризуются непрерывными технологическими процессами, протекающими на различных установках с получением множества видов конечных изделий. Управление непрерывным производством, мониторинг состояния его объектов и технологических цепочек, планирование и соблюдение графика производства и поставки готовой продукции оказывается весьма сложной задачей.

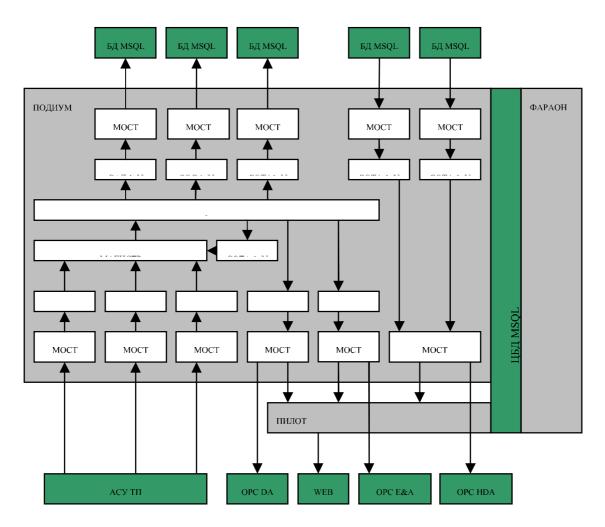
Поэтому промышленные предприятия идут по пути комплексной автоматизации основного производства. Программное обеспечение автоматизации управления промышленным предприятием должно легко адаптироваться к существующим на предприятии программным комплексам, учитывать особенности бизнес-процессов и производства, обеспечивать технологический персонал и менеджмент достоверными и оперативными данными.

Уровень управления технологией производства обеспечивается локальными АСУТП, поставляемыми вместе с производственным оборудованием. Каждая АСУТП представляет собой законченный, изолированный от других АСУТП, локальный программно-аппаратный комплекс, предназначенный для управления конкретным технологическим процессом, например: АСУТП насосной станции, АСУТП подачи воды из скважины, АСУТП отопления помещения, АСУТП прокатного стана, АСУТП доменной печи, АСУТП подстанции электроснабжения. Внедрение разнородных АСУТП, на базе различных сетевых архитектур, аппаратных и программных решений, усложняет задачу комплексного автоматического мониторинга и диспетчеризации объекта в целом. Особая проблема состоит в реализации однородных интерфейсов доступа к данным различных АСУТП, работающих асинхронно.

Развитие программно – технических средств за последние 25 лет в корне изменило структуру построения автоматизированных систем. Программное обеспечение становится определяющим компонентом взаимодействия систем АСУ.

Группа специалистов г. Магнитогорска, работающих в области системной интеграции, с 1998 года занимается разработкой, внедрением и сопровождением программных продуктов для промышленных предприятий. Анализируя специфику автоматизации крупных предприятий, на основе опыта, накопленного в ходе внедрения различных программных продуктов, разработан специализированный программный комплекс «ПАРАДИГМА»).

СПК «ПАРАДИГМА» представляет собой многоуровневую компонентно-ориентированную систему взаимодействия распределенных данных. Являясь интеграционным ядром между уровнем управления технологией и уровнем управления производством (MES), обеспечивает гибкий механизм для построения систем диспетчеризации и контроля. Архитектурно «ПАРАДИГМА» представляет собой 9 отдельных модулей (см. рисунок).


СПК «ПАРАДИГМА» обеспечивает объединение разнородных систем АСУТП в единое пространство распределенных технологических данных, с возможностью их оперативной обработки, накопления и вывода архивной информации, а также формирования событий и регистрации аварийных состояний. В основе доступа к производственной информации реального времени, предоставляемой технологическим уровнем АСУТП, используются стандартные интерфейсы

OLEDB или OPCDA. Для обеспечения интеграции с АСУТП, использующих нестандартные интерфейсы, разработаны специализированные программные модули.

Для крупных предприятий, где много территориально распределенных объектов автоматизации, СПК «ПАРАДИГМА» может объединяться в каскадную структуру.

Все данные, собранные в ядре интеграционного комплекса, доступны по стандартным интерфейсам для любых систем АСУП предприятия.

Клиенты, работающие с системой СПК «ПАРАДИГМА» используют WEB-интерфейс, т.е. могут находиться в любой точке планеты.

Структурная схема СПК «ПАРАДИГМА»:

ФАРАОН - Функциональный архитектор по развертыванию, администрированию и общей настройки

ПОДИУМ - Подсистема обработки данных и управления модулями

СОТА - Сервер обработки тегов и агрегирования

САД - Сервер архивации данных

СОС - Сервер обработки событий

МОСТ - Модуль оперативного сопряжения тегов

МАГИСТР - Математико-алгоритмический интерпретатор специализированных технологических расчетов

БОД - Буфер оперативных данных

ПИЛОТ - Подсистема извлечения и локального отображения тегов

Преимущества внедрения:

- Автоматическое формирование критериев, характеризующих состояние объекта управления и его представление на всех уровнях производства.
- Единый стандарт для решения интеграционных задач: использование единых технологий и единых форматов данных.
- Единое консолидированное хранилище технологических данных.
- Независимость от программных продуктов АСУ нижних и верхних уровней.
- Построение иерархических систем автоматизации для территориальнораспределенных организаций.
- Поддержка СУБД: для хранения данных может использоваться СУБД MS SQL или InSQL.

Развитие современных программных и аппаратных средств создало возможность построения гибкой и надежной системы сбора и отображения технологической информации. При огромном количестве параметров и событий, характеризующих производственные процессы, требуется автоматическая система сбора, агрегирования, хранения и представления ключевых параметров функционирования объекта управления. Представленная авторами реализация может быть применена на различных предприятиях как основа решения задач диспетчеризации и контроля.